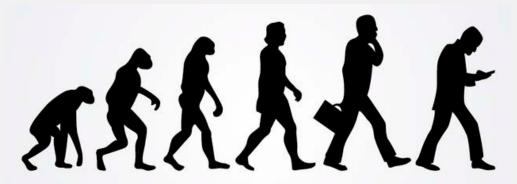
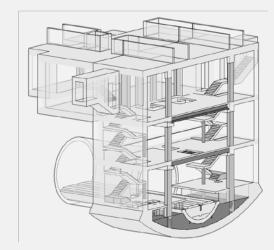
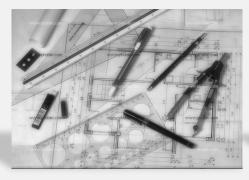

MODELOS BIM Y DISCIPLINA DE ESTRUCTURAS

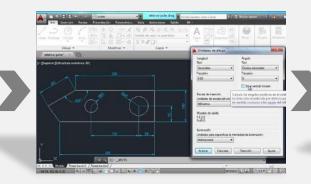
Introducción

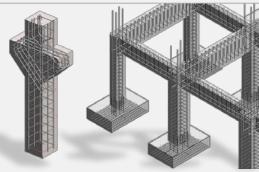
- BIM dentro del Departamento de Estructuras

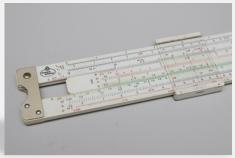

Metodología

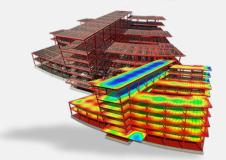

- El Modelo de la Estructura dentro del Proceso.
- Tipos de Elementos Estructurales dentro del Proyecto BIM
- Parametrización dentro de la generación del Modelo
- Level of development (LOD)
- Relación entre la Modelización y el Software de Cálculo
- Programación

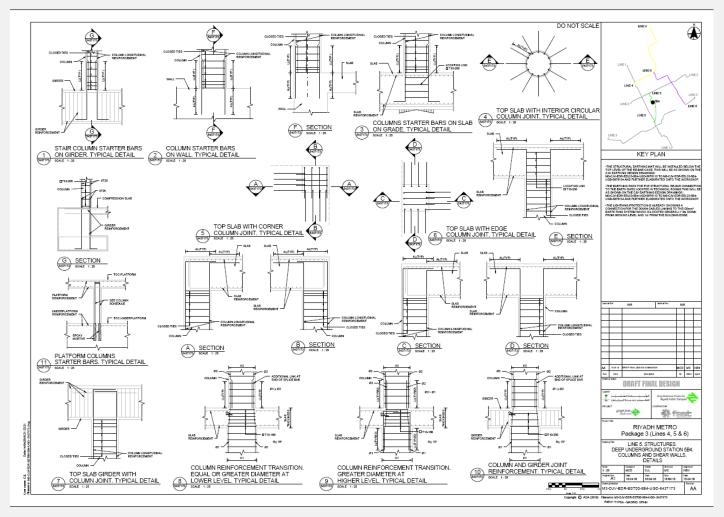

Conclusiones



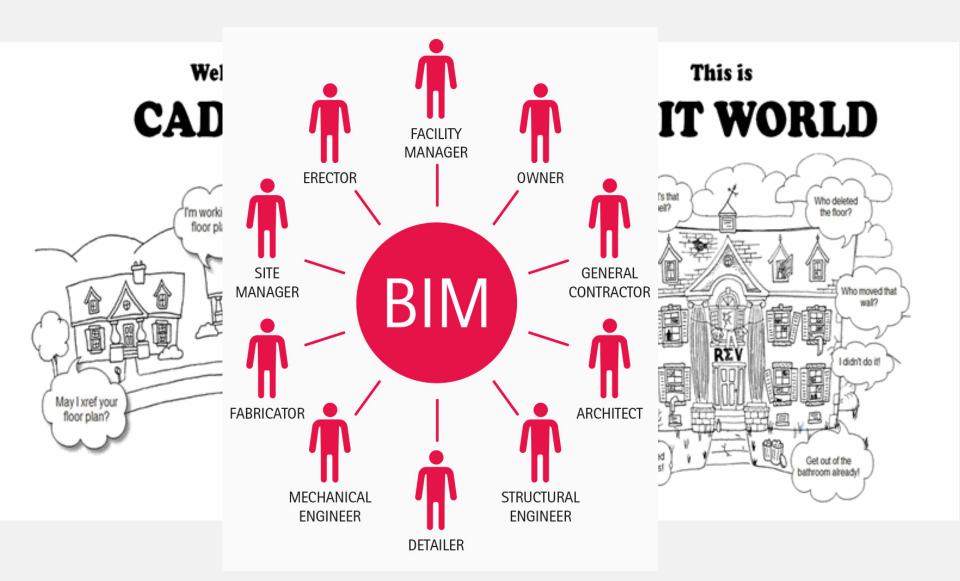

IntroducciónBIM dentro del Departamento de Estructuras





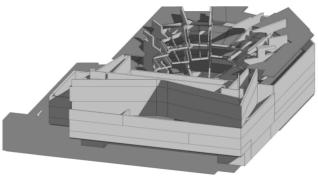


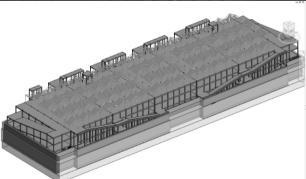
Introducción BIM dentro del Departamento de Estructuras

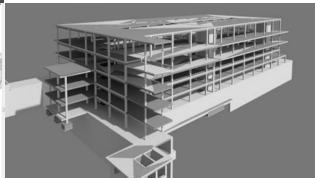


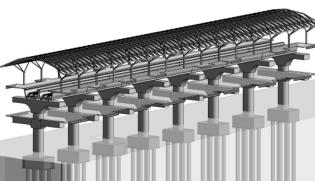
El Modelo de la Estructura dentro del Proceso

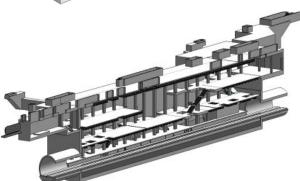
El Modelo de la Estructura dentro del Proceso

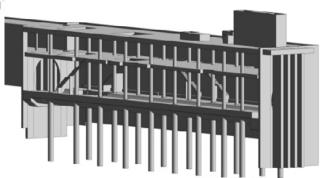


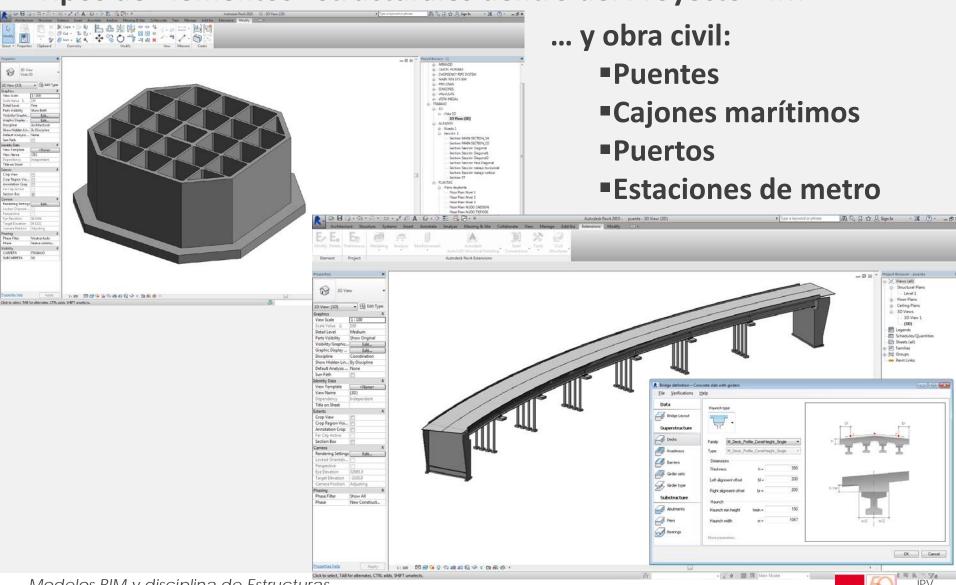

Tipos de Elementos Estructurales dentro del Proyecto BIM: Edificación...









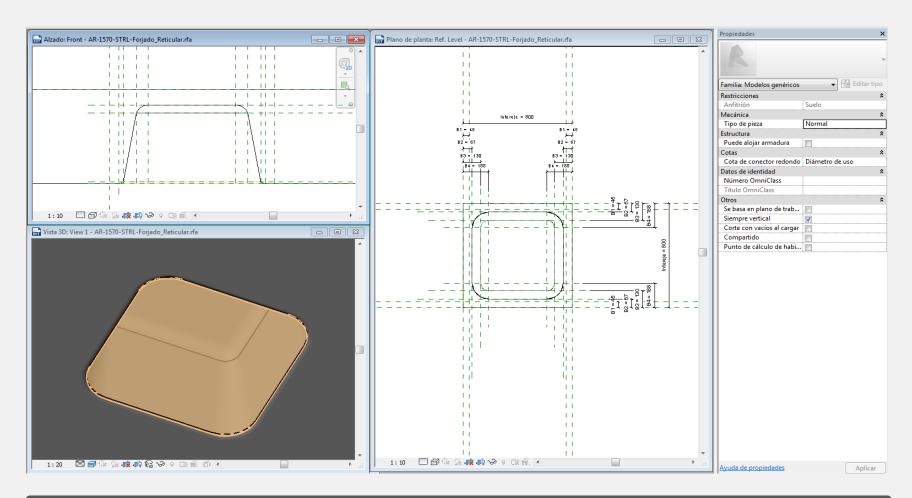


Tipos de Elementos Estructurales dentro del Proyecto BIM

Tipos de Elementos Estructurales dentro del Proyecto BIM

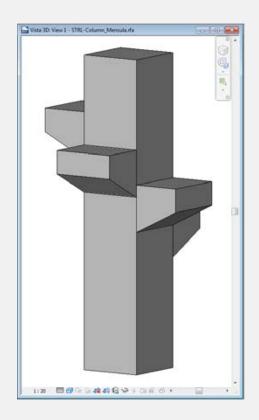
- 1. CIMENTACION
 - a. Cimentaciones Superficiales
 - b. Cimenta
- 2. ELEMENTO
 - a. Muros
 - b. Pantalla

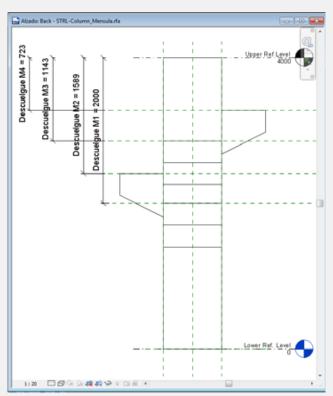
3. PILARES.

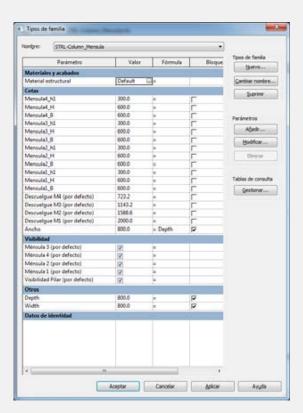

De la sensación inicial...

- a. Hormigón in-situ
- b. Prefabricados
- c. Acero estructural

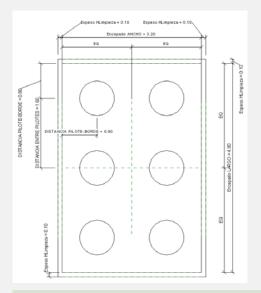
- 4. FORJADOS
 - a. Unidireccionales

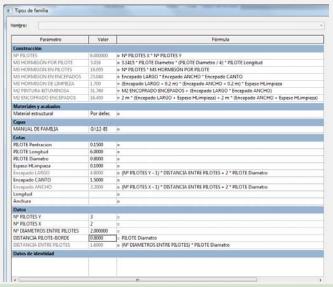


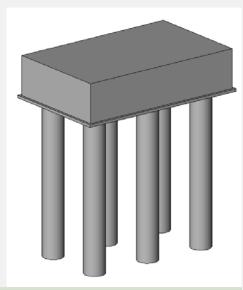

- c. Accid estructure
- ...a la parametrización
- 6. ESTRUCTURA METÁLICA
 - a. Celosías planas
 - b. Estructuras tridimensionales



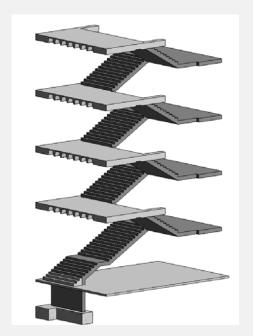
FAMILIA PARAMETRIZADA DE CUBETA RECUPERABLE PARA FORJADOS RETICULARES

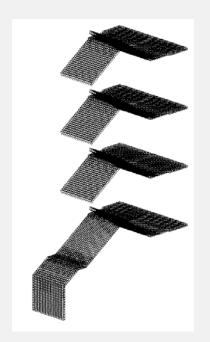




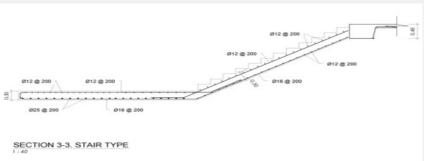


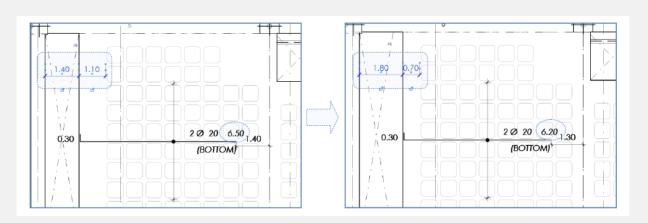
FAMILIA PILAR PREFABRICADO CON LA POSIBILIDAD DE 1 A 4 MÉNSULAS DE GEOMETRÍA Y COTA VARIABLE

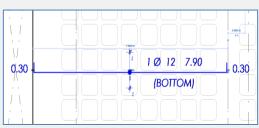



<medicion encepados=""></medicion>								
Α	В	С	D	E	F	G	Н	I
Tipo	Recuento	DIMENSIONES DIMENSIONES		MEDICION				
Про		Encepado ANCHO	Encepado LARGO	Encepado CANTO	M3 HORMIGON DE LIMPIEZA	M3 HORMIGON EN ENCEPADO	M2 ENCOFRADO ENCEPADO	M2 PINTURA BITUMINOSA
ENCEPADO TIPO 2	1	4.50	4.50	1.50	2.21 m³	30.38 m³	18 m²	39 m²
ENCEPADO TIPO 3	1	7.00	4.50	2.00	3.38 m³	63.00 m³	23 m²	55 m²
ENCEPADO TIPO 4	3	7.00	7.00	2.00	5.18 m³	98.00 m³	28 m²	77 m²

<medicion pilotes=""></medicion>						
Α	В	С	D	E	F	G
Tipo Recuento		Nº PILOTES	PILOTES PILOTE Diametro PILOTE Longitud		M3 HORMIGÓN POR PILOTE	M3 HORMIGON EN PILOTES
ENCEPADO TIPO 2	1	4	1.00	8.00	6.28 m³	25.13 m³
ENCEPADO TIPO 3	1	6	1.00	15.00	11.78 m³	70.68 m³
ENCEPADO TIPO 4	3	9	1.00	6.00	4.71 m³	42.41 m³


FAMILIA ENCEPADO DE 2 A n PILOTES




A	В	С	D
Cantidad	Diámetro de barra	Longitud de barra	Kg
12			
15	12	8.52	113.46 kg
20	12	4.67	82.91 kg
10	12	8.01	71.13 kg
19	12	6.72	113.31 kg
20	12	7.77	137.94 kg
24	12	4.07	86.69 kg
25	12	4.15	92.17 kg
10	12	4.15	36.87 kg
11	12	4.12	40.22 kg
15	12	4.11	54.68 kg
14	12	4.11	51.04 kg
6	12	4.09	21.80 kg
6	12	4.09	21.80 kg
20	12	5.30	94.03 kg
21	12	4.11	76.71 kg
22	12	4.10	80.13 kg
20	12	5.52	97.94 kg
16	`		
20	16	5.32	167.83 kg
20	16	9.25	292.10 kg
20	16	4.72	149.02 kg
20	16	8.48	267.74 kg
20	16	3.16	99.77 kg
25			
12	25	8.43	389.99 kg
10	25	7.84	302.15 kg

- ✓ No obtenemos la Representación esperada.
- ✓ Ralentiza en exceso los procesos.

ARMADURA TRIDIMENSIONAL

Α	В	С	D
Cantidad	Diámetro de barra	Longitud de barra	Kg
12			
15	12	8.52	113.46 kg
20	12	4.67	82.91 kg
10	12	8.01	71.13 kg
19	12	6.72	113.31 kg
20	12	7.77	137.94 kg
24	12	4.07	86.69 kg
25	12	4.15	92.17 kg 36.87 kg
10	12	4.15	36.87 kg
11	12	4.12	40.22 kg
15	12	4.11	54.68 kg
14	12	4.11	51.04 kg
6	12	4.09	21.80 kg
6	12	4.09	21.80 kg
20	12	5.30	94.03 kg
21	12	4.11	76.71 kg
22	12	4.10	80.13 kg
20	12	5.52	97.94 kg
16			`
20	16	5.32	167.83 kg
20	16	9.25	292.10 kg
20	16	4.72	292.10 kg 149.02 kg
20	16	8.48	267.74 kg
20	16	3.16	99.77 kg
25			
12	25	8.43	389.99 kg
10	25	7.84	302.15 kg

- ✓ Obtenemos la Representación esperada.
- ✓ Se vincula con las condiciones de contorno
- ✓ De igual manera, contiene la información medible
- ✓ No Ralentiza en exceso los proceso.

ARMADURA BIDIMENSIONAL PARAMÉTRICA

- Nivel de Desarrollo del Modelo la Estructura

LOD 100: Descripción del elemento

LOD 200: Características básicas del

elemento

LOD 300: Definición precisa del elemento

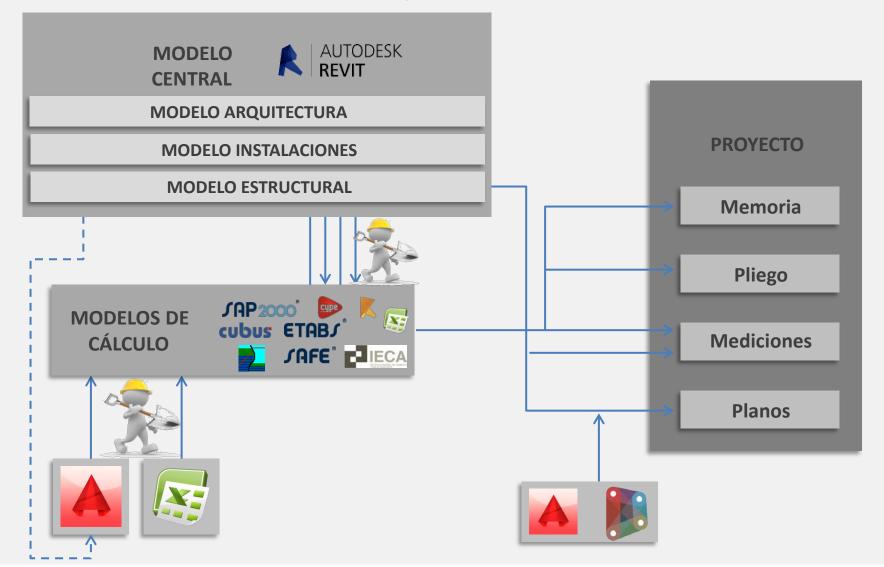
		10 – Precast Structural Inverted T Bea	ım (Concrete)		
	100	See <u>B10</u>			
	200	Element modeling to include: Type of structural concrete system			
0		Approximate geometry (e.g. depth) of structural elements			
			B1010.10-LOD 200 Precast Structural Inverted T Beam (Concrete)		
	300	Element modeling to include:	_		
		Specific sizes and locations of main concrete structural members modeled per defined structural grid with correct orientation Concrete defined per spec (strength, air entrainment, aggregate size, etc.) All sloping surfaces included in model element with exception of elements affected by manufacturer selection			
		Required non-graphic information associated with model elements includes:			
		Penetrations for items such as MEP Finishes, camber, chamfers, etc. Typical details Embeds and anchor rods Aggregate, clear clover			
		Reinforcing spacing Reinforcing Live loads	B1010.10-LOD 300 Precast Structural Inverted T Beam (Concrete)		

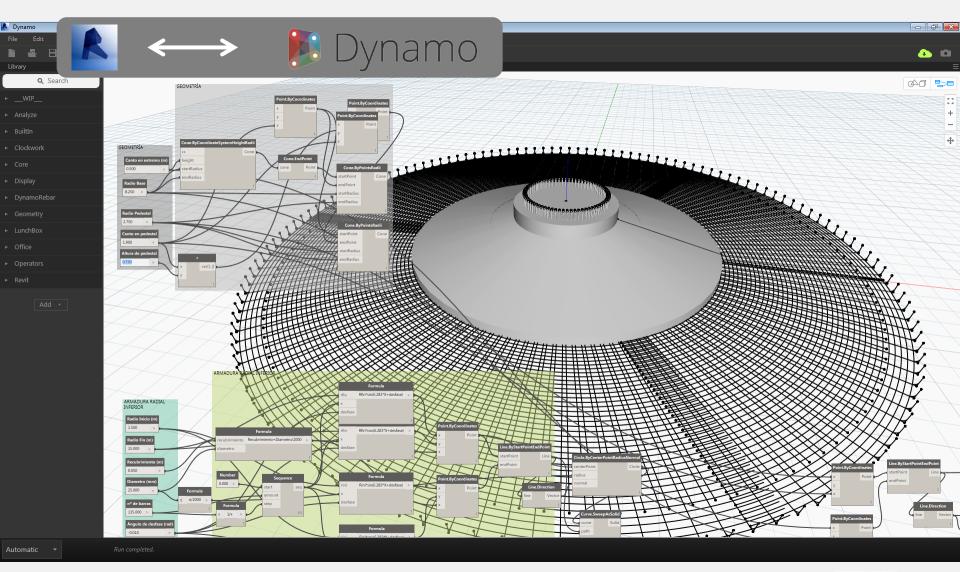

- Nivel de Desarrollo del Modelo la Estructura

LOD 350: Insertos en el elemento

LOD 400: Armadura

IVIO	delo la Estructura	
350	Reinforcing Post-tension profiles and strand locations Reinforcement called out, modeled if required by the BIMXP, typically only in congested areas Pour joints and sequences to help identify reinforcing lap splice locations, scheduling, etc. Lifting devices Expansion Joints Embeds and anchor rods Post-tension profile and strands modeled if required by the BIMXP Penetrations for items such as MEP Any permanent forming or shoring components	
		B1010.10-LOD 350 Precast Structural Inverted T Beam (Concrete)
400	All reinforcement including post tension elements detailed and modeled Finishes, camber, chamfer, etc.	
		B1010.10-LOD 400 Precast Structural Inverted T Beam (Concrete)


Relación entre la Modelización y el Software de Cálculo: La Teoría


La relación entre el Modelo Revit y el Modelo de Cálculo depende de cada software y casa comercial

Relación entre la Modelización y el Software de Cálculo: La Práctica

Programación

CONCLUSIONES

- ✓ No confundir "Modelización 3D" con BIM
- ✓ Gestión de la Información.
- ✓ Finalidad de la parametrización.
- ✓ La metodología BIM debe aportar optimización.
- ✓ No olvidar el objetivo final: "El Plano"

GRACIASSu grupo consultor

